
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Je�erson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the O�ce of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1992 Technical Paper

4. TITLE AND SUBTITLE

Advanced Techniques in Reliability Model Representation and
Solution

6. AUTHOR(S)

Daniel L. Palumbo and David M. Nicol

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

5. FUNDING NUMBERS

WU 505-64-10-07

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-17048

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TP-3242

11. SUPPLEMENTARY NOTES

Palumbo: Langley Research Center, Hampton, VA; Nicol: College of William and Mary, Williamsburg, VA.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassi�ed{Unlimited

Subject Category 66

13. ABSTRACT (Maximum 200 words)

The current tendency of
ight control system designs is towards increased integration of applications and
increased distribution of computational elements. The reliability analysis of such systems is di�cult because
subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have
been working for several years to extend the capability of Markov modelling techniques to address these
problems. This e�ort has been focused in the areas of increased model abstraction and increased computational
capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-
oriented block diagram of the system. RMG uses a failure modes-e�ects algorithm to produce the reliability
model from the graphical description. The ASSURE software tool is a parallel processing program that
uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov
speci�cation interface to the SURE tool (ASSIST) modelling language. A failure modes-e�ects simulation is
used by ASSURE. These tools were used to analyze a signi�cant portion of a complex
ight control system.
The successful combination of the power of graphical representation, automated model generation, and parallel
computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Distributed fault-tolerant systems; Dynamically recon�guring networks; Failure
modes-e�ects analysis; Markov models; Reliability; State-space reduction

17

16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT

Unclassi�ed Unclassi�ed

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

NASA-Langley, 1992

Nomenclature

AIPS advanced information processing system

ASSIST abstract semi-Markov speci�cation interface to SURE tool

ASSURE none

CH channel

DIU device interface unit

FMEA failure modes-e�ects analysis

FMES failure modes-e�ects simulation

FTP fault-tolerant processor

HARP Hybrid Automated Reliability Predictor

IAPSA integrated airframe/propulsion control system architecture

I/O input/output

NET network

NI network interface

RM redundancy management

RMG reliability model generator

SURE semi-Markov unreliability range evaluator

iii

Abstract

The current tendency of
ight control system designs is towards in-
creased integration of applications and increased distribution of compu-

tational elements. The reliability analysis of such systems is di�cult be-

cause subsystem interactions are increasingly interdependent. Researchers

at NASA Langley Research Center have been working for several years

to extend the capability of Markov modelling techniques to address these

problems. This e�ort has been focused in the areas of increased model

abstraction and increased computational capability. The reliability model

generator (RMG) is a software tool that uses as input a graphical object-

oriented block diagram of the system. RMG uses a failure modes-e�ects

algorithm to produce the reliability model from the graphical description.

The ASSURE software tool is a parallel processing program that uses

the semi-Markov unreliability range evaluator (SURE) solution technique

and the abstract semi-Markov speci�cation interface to the SURE tool

(ASSIST) modelling language. A failure modes-e�ects simulation is used

by ASSURE. These tools were used to analyze a signi�cant portion of a

complex
ight control system. The successful combination of the power

of graphical representation, automated model generation, and parallel

computation leads to the conclusion that distributed fault-tolerant system

architectures can now be analyzed.

Introduction

High reliability in digital systems is achieved, in a
typical design, through redundancy and dynamic re-
con�guration. Markov model solution techniques are
commonly used when computing the reliability of this
type of system. The state transition matrix represen-
tation of a Markov model is useful for expressing the
sequence dependencies that can occur during a series
of system failures and subsequent recoveries. How-
ever, distributed, fault-tolerant, and real-time sys-
tems result in extremely large and complex models.
One conclusion of the integrated airframe/propulsion
control system architecture (IAPSA) program (ref. 1)
is that two factors limit the use of Markov models on
the systems being proposed for the next generation
of aerospace vehicles.

The �rst factor limiting the use of Markov models
is that the state space grows exponentially with sys-
tem size. This growth con�nes the size of the system
that can be analyzed to one that can be accommo-
dated by the available computing resources. One ex-
ample is the Hybrid Automated Reliability Predictor
(HARP) (ref. 2). The HARP program presents the
user with a high-level interface consisting primarily
of fault tree input (to describe system failure states)
and fault/error-handling models (to describe recov-
ery processes). This input is then translated into a
Markov model and solved. To limit the size of the
reliability model, HARP uses a process of behavioral

decomposition, aggregation, and truncation at the
third level. An estimate of the resulting model size
for a system with n components is given by

Total number of states =
�
n

1

�
+

�
n

2

�
+

�
n

3

�

(1)

Now, consider the IAPSA architecture, which
consists of over 500 components. The approxima-
tion in equation (1) yields 21 million states. This
approximation does not consider that, as in IAPSA,
component dependencies limit the extent to which
states can be aggregated. As discussed in a sub-
sequent section, an IAPSA submodel with 80 com-
ponents produced 27 million states. The magnitude
of this problem is enormous.

The second factor limiting the use of Markov
models is the di�culty in constructing a model of
a large distributed and integrated system. The com-
plex interdependencies confound the analyst's under-
standing of system behavior. Again, with IAPSA as
an example, a single failure of a processing channel
has the potential to e�ect three redundancy manage-
ment regimes: the processor, the I/O network, and
the I/O devices. These relationships, which can be
signi�cant, are at times obscured and threaten the
accuracy of the model.

Researchers at NASA Langley Research Center
have been working for several years to extend the

1

capability of Markov solution techniques to sys-
tems like IAPSA. These e�orts have their founda-
tion in the semi-Markov unreliability range eval-
uator (SURE) (refs. 3 and 4) and the abstract
semi-Markov speci�cation interface to the SURE tool
(ASSIST) (refs. 5 and 6). The more recent e�orts
that are the subject of this paper include the reli-
ability model generator (RMG) (refs. 7 and 8) and
ASSURE. RMG is based on an algorithm for au-
tomating the failure modes-e�ects analysis (FMEA)
that is part of every reliability analysis. RMG uses a
graphically based object-oriented description of the
system as input to this algorithm. The output
of RMG is an ASSIST language description of the
reliability model. ASSURE combines the ASSIST
language with the SURE computational technique in
a parallel program. ASSURE does not need to retain
state information and therefore does not su�er from
the state-space storage problem. ASSURE has also
extended the ASSIST syntax to allow reference to
a failure modes-e�ects simulation (FMES). Features
such as graphical representation, automated model
generation, parallel processing, and FMES are be-
ing combined into a tool set that will presumably
have the power to compute the reliability of large
fault-tolerant
ight control systems.

In the following sections, three submodels of the
IAPSA architecture are introduced as a basis for
discussing RMG, ASSURE, and FMES. The next
section is a brief description of IAPSA.

IAPSA Architecture

The integrated airframe/propulsion control sys-
tem architecture (IAPSA) (ref. 1) was designed
to meet the requirements generated when airframe
and engine control laws are combined in a high-
performance military aircraft. Features of the air-
craft are canards and dual engines with variable
inlets and vectoring nozzles.

Figure 1 is a representative block diagram of the
IAPSA architecture. The architecture is based on
the advanced information processing system (AIPS)
building block elements (ref. 9). The AIPS building
blocks have been designed to provide fundamental
system resources for a wide spectrum of aerospace ap-
plications. The building blocks include fault-tolerant
processors (FTP's), network interfaces (NI's), nodes,
links, and device interface units (DIU's). The FTP's
can be con�gured as quad or triplex redundant com-
puters. Nodes and links are used to construct re-
pairable mesh networks. In operation a mesh net-
work is con�gured as a bus; that is, the links on each
node are statically enabled or disabled such that ev-
ery node can be reached. The I/O devices are con-

nected to the network through the DIU's. If a failure
occurs on the network, the path with the failure is
disabled and an alternate path is enabled. If this
repair can be accomplished quickly, one mesh net-
work can service the entire vehicle. In practice, using
two networks is necessary, one to control the aircraft
while the other is repaired.

Node
Link

Network interface

Quad FTP

Processing
channel

Triplex FTP

Mesh
network

Figure 1. IAPSA architecture.

A quad FTP has the major responsibility for air-
frame control. Connected to it are two I/O mesh
networks, one of which must be functioning for safe
operation of the aircraft. A triplex FTP is used for
each engine where again dual mesh networks handle
the I/O tra�c. A triplex mesh network provides a
highly reliable data path for interprocessor commu-
nication. In total, the architecture consists of 10 pro-
cessor channels, 20 NI's, 50 nodes, 90 links, 36 DIU's,
and 300 I/O devices for a total of 490 components.
This design does not include the components neces-
sary to establish the interprocessor link. This part of
the system has not yet been designed, but analysts
estimate that about 100 NI's, nodes, and links would
be used to implement it.

Reliability Model Generator

The reliability model generator was designed as
a tool for system designers. Working from a data
base of building blocks, designers can construct a
graphical block diagram of the system. When the
design is �nished, an automatic failure modes-e�ects
analysis is performed with data associated with the
graphical building block objects. The result of the
FMEA is then translated into a reliability model in
the ASSIST language (refs. 5 and 6).

The automated FMEA is implemented with an
object-oriented data base approach conceived by The
Boeing Company (refs. 7 and 8). In the data base, a

2

building block has graphical attributes of the build-
ing block itself as well as its inputs and outputs.
The building block has data attributes of component
modes and mode transition functions. The input and
output have data attributes of e�ect messages and
output transition functions.

Examples of component modes are GOOD,
FAILED ACTIVE, and FAILED PASSIVE. Com-
ponent modes are closely related to reliability model
state variables. Mode transition functions control
mode state changes. The mode transition functions
are similar to the transition rules found in ASSIST.
A mode transition function can have as its input
the current mode, the value of the building block
input and output, and a rate. Thus, a mode tran-
sition function can specify that if a building block
is GOOD, then it may become FAILED ACTIVE at
rate �.

Building block output e�ect messages take on val-
ues such as NOMINAL, ERROR, and NONE. Out-
put transition functions control the value of the mes-
sages. Output transition functions have as their
input the building block input and current compo-
nent mode. Output transition functions are consid-
ered to be an instantaneous evaluation of building
block behavior. These functions are loosely related to
the death conditions found in ASSIST. For example,
an output transition function can specify that an out-
put e�ect is ERROR if either the component mode
is FAILED ACTIVE or an input e�ect is ERROR.

To perform the automated FMEA, a building
block representing the system is formed with an
output that re
ects the system's condition and with
inputs from other building blocks. RMG is then
directed to analyze the system for conditions leading
to an ERROR output of the system. A backward-
chaining technique is used to trace this failed state
throughout the system. As the state is traced, this
technique constructs the core of the reliability model.

Example 1: FTP Network Interface

Figure 2 is a diagram of the �rst example, which
focuses on the interaction of the FTP with the mesh
networks. Here the mesh networks are modelled as
single, repairable components. Three FTP channels
are connected to each network so that both networks
function in the event of two channel failures. Ini-
tially FTP channel 1 (CH1) is controlling network 1
(NET1) with network interface 1 (NI1) and CH4 is
controlling NET2 with NI6. The remaining connec-
tions are disabled. While appearing simple on the
surface, this model is rich in interdependencies.

CH1

CH2

CH3

CH4

NI1

NI4

NI5

NI2

NI3

NI6

NET1

NET2

Processing channel

Mesh networks

Network interface

Figure 2. Example 1: FTP network interface.

Because CH1 initially controls NET1 and CH4
controls NET2; four network interfaces (NI2, NI3,
NI4, and NI5) are not used at this time. An FTP
channel failure causes the failure of its NI unit(s).
Thus, a failure of CH1 causes NI1 to fail. The ef-
fect of this failure depends on whether or not that
particular NI unit was controlling its associated net-
work at the time of the failure. For example, if CH1
fails from initial conditions (i.e., NI1 is controlling
NET1), then two recovery mechanisms must be acti-
vated: one to repair the FTP by disabling CH1 and
the other to repair NET1 by enabling NI2 as con-
troller of NET1. If NI1 fails from the initial state,
then a network recovery disables the failed link and
enables NI2 as the NET1 controller on the condition
that CH2 and NI2 have not yet failed. A subsequent
failure of CH1 results only in a recovery of the FTP
because CH1 is not the current network controller.
A reliability analysis tool must be able to track such
dependencies without burdening the user with cum-
bersome constructs or cryptic tricks. (See ref. 10 for
further discussion.)

Figure 3 is the RMG block diagram for exam-
ple 1. This model contains all the elements of �gure 2
with the addition of building blocks representing the
redundancy-management (RM) routines (FTP RM
and NETn RM) and the SYSTEM building block.
The following description lists the component at-
tributes and explains how RMG uses these attributes
to perform the automated FMEA.

3

FTP RM

CH1

CH2

CH3

CH4

NI1

NI2

NI3

NI4

NI5

NI6

NET1 RM

NET2 RM

NET1

NET2

SYSTEM

Processing channels Network interfaces
Mesh networks

Redundancy management modules

System module

Figure 3. RMG diagram for example 1.

The FTP channels (CH1{4) have the following attributes:

Component modes: (GOOD, FAILED, REMOVED);
Inputs: ;
Outputs: CH STATUS;
Mode transition functions: IF (mode=GOOD) THEN (mode=FAILED) AT failure rate;

IF (mode=FAILED) THEN (mode=REMOVED) AT recover rate;
Output modes: (NOMINAL, ERROR, NONE);
Output transition functions: IF (mode=GOOD) THEN (CH STATUS=NOMINAL)

ELSE IF (mode=FAILED) THEN (CH STATUS=ERROR)
ELSE IF (mode=REMOVED) THEN (CH STATUS=NONE);

The FTP RM has the following attributes:

Component modes: ();
Inputs: CH STATUS 1,CH STATUS 2,CH STATUS 3, CH STATUS 4;
Outputs: FTP STATUS;
Mode transition functions: ;
Output modes: (NOMINAL, ERROR);
Output transition functions: IF number of ((CH STATUS 1=NOMINAL),

(CH STATUS 2=NOMINAL),
(CH STATUS 3=NOMINAL),
(CH STATUS 4=NOMINAL)) >

number of ((CH STATUS 1=ERROR),
(CH STATUS 2=ERROR),
(CH STATUS 3=ERROR),
(CH STATUS 4=ERROR)) THEN

FTP STATUS=NOMINAL
ELSE

FTP STATUS=ERROR;

4

The FTP RM block is an instantaneous evaluation of the state of the FTP and thus does not require

component modes or mode transition functions. The RMG provides a convenient number of function that

accumulates the number of TRUE conditions found in the argument list. Here, the output transition function

uses the number of function to perform a simple majority vote evaluation. In the case of a quad vote, two or

more inputs receiving ERROR status cause the FTP RM block to transmit an ERROR status. The e�ect of

a recovery of a failed channel is to send a NONE status, which protects the FTP from failure on a subsequent

channel failure.

The NI components have the following attributes:

Component modes: (GOOD, FAILED);
Inputs: (CH STATUS);
Outputs: (NI STATUS);
Mode transition functions: IF (mode=GOOD) THEN (mode=FAILED) AT failure rate;
Output modes: (NOMINAL, ERROR);
Output transition functions: IF (mode=GOOD) and (CH STATUS=NOMINAL) THEN

NI STATUS=NOMINAL
ELSE

NI STATUS=ERROR;

The formulation of the output transition function causes the NI component to produce an error message

output when the host channel fails. Thus, to those components connected to the NI outputs, the NI itself

appears to have failed.

The NET RM components have the following attributes:

Component modes: (MODE1, MODE2, MODE3);
Inputs: NI STATUS 1, NI STATUS 2, NI STATUS 3;
Outputs: NET RM STATUS;
Mode transition functions: IF (mode=MODE1) and (NI STATUS 1=ERROR) THEN

IF (NI STATUS 2=NOMINAL) THEN
(mode=MODE2) AT recovery rate;

ELSE IF (NI STATUS 3=NOMINAL) THEN
(mode=MODE3) AT recovery rate;

IF (mode=MODE2) and (NI STATUS 2=ERROR) THEN
IF (NI STATUS 3=NOMINAL) THEN

(mode=MODE3) AT recovery rate;
Output modes: (NOMINAL, ERROR);
Output transition functions: IF (mode=MODE1) THEN

(NET RM STATUS=NI STATUS 1);
IF (mode=MODE2) THEN

(NET RM STATUS=NI STATUS 2);
IF (mode=MODE3) THEN

(NET RM STATUS=NI STATUS 3);

The NET RM block uses the status outputs of the three NI components to determine its operating mode.

The operating mode corresponds to which NI (and therefore which FTP channel) is controlling the network.

The status of the controlling NI is propagated as the NET RM output to the NET component.

The NET components have the following attributes:

Component modes: (GOOD,FAILED);
Inputs: NET RM STATUS;
Outputs: NET STATUS;
Mode transition functions: IF (mode=GOOD) THEN (mode=FAILED) AT failure rate;

IF (mode=FAILED) THEN (mode=GOOD) AT recovery rate;
Output modes: (NOMINAL, ERROR);
Output transition functions: IF (mode=GOOD) THEN (NET STATUS=NET RM STATUS)

ELSE (NET STATUS=ERROR);

5

The NET component is assumed to be in�nitely repairable; that is, the NET has inexhaustible spares.

However, when the NET RM indicates an NI failure, the NET propagates an ERROR indication until the

NET RM replaces the failed NI (if possible).

The SYSTEM building block has the following attributes:

Component modes: ();
Inputs: NET STATUS 1, NET STATUS 2, FTP STATUS;
Outputs: SYSTEM STATUS;
Mode transition functions: ;
Output modes: (NOMINAL,ERROR);
Output transition functions: IF ((NET STATUS 1=NOMINAL) or

(NET STATUS 2=NOMINAL)) and
(FTP STATUS=NOMINAL) THEN
(SYSTEM STATUS=NOMINAL)

ELSE
(SYSTEM STATUS=ERROR);

The SYSTEM building block contains an output
transition function that modi�es the SYSTEM mode
from NOMINAL to ERROR in the event that either
both network output e�ect messages are ERROR or
the FTP RM output message is ERROR.

The SYSTEM building block is used as a starting
point for the FMEA. The conditions in the SYSTEM
output transition that contribute to an ERROR con-
dition are traced back, assembled, and reduced to dis-
junctive normal form.1 These conditions can then be
listed as DEATHIF statements in the ASSIST model
description. Mode transition functions are resolved
and used as model expansion rules (called TRANTO
rules) in ASSIST.

Results

Models of example 1 were both manually coded
and automatically generated with RMG. The mod-
els appeared to be very di�erent. RMG produced
an exhaustive expansion of the system. The man-
ually coded model was more compact in a situa-
tion analogous to comparing manually written assem-
bler code to compiler-generated code. The computed
reliability for the two models di�ered by a small
amount (�fth decimal digit). Comparing the mod-
els for equivalence uncovered an interesting discrep-
ancy. The RMG-generated model achieved a more
thorough expansion of the state space. In the man-
ually coded model, some network failures were inad-
vertently omitted. The RMG-generated model took
about �ve times as long to process because of both

1Given a logical expression that consists of a series of sub-

expressions that are connected by AND or OR, disjunctive

normal form is a reduction of the logical expression to one

that is a series of subexpressions connected by OR where the

subexpressions contain only AND logical functions.

the size of the model representation (the ASSIST
code) and the larger state space that RMG covered.
The automatically generated model size is almost
three times larger than the manually coded model
(see table I).

Table I. Example 1 Performance Metrics

Model

Manually RMG
Parameter coded generated

Number of states 1555 4466
ASSIST time 105 sec 1810 sec
SURE time 420 sec 633 sec

Discussion

The particular diagram shown in �gure 3 is not an
ideal graphical representation. Having the display of
subcomponents (such as the NI's) somehow represent
the particular relationship between the subcompo-
nents and their parent components is preferred. For
example, the NI communicates with an FTP channel
and is critically dependent on the FTP channel. The
NI is a subcomponent and should be viewed as such.
(See �g. 2.)

Redundancy management routines are more di�-
cult to represent. A redundancy management routine
is what turns a discrete set of computer channels into
a fault-tolerant computer. Yet, the redundancy man-
agement routine is not a component typically pic-
tured in a block diagram as it is in �gure 3. As for
the FTP, the FTP RM might be better expressed by
explicitly showing the interchannel linkages and vot-
ers as subcomponents that are part of the actual FTP
channel architecture. However, this type of expres-

6

sion does not work for the NET RM. The NET RM
organizes the NI's, which are part of an FTP channel,
and the mesh network into a fault-tolerant network.
As modelled in this example, network recoveries are
generated in both the NET RM and the NET com-
ponent. This adaptation was unavoidable because
of limitations in the version of RMG used to gen-
erate this example. When considering a better way
to represent the NET RM, it is di�cult to imagine a
clean construct that can be added to each component
of this assemblage and be able to describe the NET
RM function. The redundancy management routines
are thus best described as separate objects whose at-
tributes can be related to other components with a
graphical device such as color or a unique icon. This
concept will be considered in future versions of the
software.

ASSURE

Given the capability to automatically generate
a model, the problem immediately becomes one
of computing the extremely large models that will
certainly follow. The ASSIST/SURE combination
has the drawback that the entire state space must
be generated by ASSIST and searched by SURE.
While methods of pruning the state space and path
depth have been developed for both ASSIST and
SURE, modest models of a few dozen interdependent
components quickly tax current workstations.

The ASSIST modelling language has been com-
bined with the SURE solution technique in a relia-
bility analysis tool (ASSURE) in which state-space
storage requirements are minimized. The SURE so-
lution technique provides for the calculation of a
Markov model as the expansion of a series of indepen-
dent paths (ref. 4). The ASSIST modelling language
describes how these paths are grown (ref. 5). In
ASSURE, the ASSIST language is translated into C,
linked with SURE solution procedures, and executed
to solve the model. The state probabilities can then
be calculated as the model is grown. Two mecha-
nisms are available to reduce model size. With ac-
cess to the state probabilities, an informed decision
can be made as to when to terminate path growth
(e.g., when state probability <10�14). Also, be-
cause the only state of consequence at any time is
the state being expanded, when expansion is com-
plete, the state can be discarded. Thus, ASSURE
does not need to maintain the complete state space
in memory. Also, because the paths through the
model are independent, the ASSURE program can
be parallelized.

Example 2: Nodes, Links, and Devices

Figure 4 illustrates a problem generated to test
the capability of ASSURE. The system is an evo-
lution of example 1 with the addition of a two-layer
network and I/O devices. A mesh network could not
be modelled initially because of the di�culty in ex-
pressing the network regrow algorithm in the ASSIST
language. (This di�culty was later recti�ed. See
section entitled \Failure Modes-E�ects Simulation.")
The I/O devices are quad redundant, use majority
voting, and have redundancy management routines
similar to those of FTP.

FTP channel

Node

Device A

Device D
Device C

Device B

Network interface
Link

Figure 4. Example 2: FTP network interface with two-layer

network and I/O devices.

Results

ASSIST produced a reliability model for the
system in �gure 4; the model contained over
40 000 states and 1 000 000 transitions (with no prun-
ing). Direct comparison with ASSURE is not possi-
ble because ASSURE does not aggregate states when
it produces the model. Model statistics (reliabil-
ity and pruning bounds, number of pruned paths,

7

Table II. Example 2 Performance Metrics

Processor SURE model size Run time, hr Memory usage

ASSIST/SURE SUN 3/150 27 Mbyte 11.50 100 Mbyte

ASSURE (Serial) SUN 3/150 NA 0.60 1 Mbyte

ASSURE (Parallel) 32 iPSC/860 NA 0.01 1 Mbyte per node

and pruning error) for SURE and ASSURE were
identical; thus, ASSURE computed the model cor-
rectly. ASSURE exists both in serial and parallel
form. The test runs for the serial version of ASSURE
and ASSIST/SURE were performed on a SUN 3/150
processor. The parallel version of ASSURE was exe-
cuted on a 32-node iPSC/860 hypercube. The serial
ASSURE program execution was 10 times faster and
used 100 times less memory than ASSIST/SURE.
Parallel ASSURE increased this performance another
100 times. (See table II for details.) Overall, a
speed increase on the order of 3 orders of magnitude
is realized over the original ASSIST/SURE solvers.
The processors in the hypercube are typically over
90 percent utilized.

Note, ASSURE is a prototype and thus does not
perform extensive error checking (as does SURE).
If extensive error checking were performed it would
reduce the observed improvement. However, given
the degree of e�ciency of the parallel version, a
great deal of improvement will always be obtained
with parallelization. Serial ASSURE bene�ts from
not having to maintain the complete state space in
memory while computing. As soon as the state space
outgrows available physical memory, ASSIST/SURE
su�ers performance degradation due to swapping of
virtual memory.

Failure Modes-E�ects Simulation

As previously mentioned, expressing the mesh
network regrow algorithm in the ASSIST language
is di�cult. Two possible methods are exhaustive
enumeration (which is almost immediately ruled out)
and the division of the algorithm into discrete steps.
The division method is possible but presents a con-
fusing model because each step in the process must
be assigned a rate and therefore produces another
state with subsequent children states.

An alternative approach takes advantage of the
ASSURE translation of ASSIST into C code. Thus,
the regrow algorithm can be coded in a C procedure
and ASSURE can reference this procedure at the
appropriate time. Studying this approach revealed
that an extension of the ASSIST syntax was nec-
essary. Further work using the extension to ASSIST

led to an approach in which the concept of automated
FMEA fostered by RMG is incorporated as C code in
ASSURE. This concept is the failure modes-e�ects
simulation.

ASSIST Extensions

The basic components of an ASSIST model de-
scription are the state vector, model expansion rules,
and model termination rules. The reliability model
is produced by repeatedly applying the model ex-
pansion rules to a state vector and thus creating new
state vectors. The process continues until the list
of state vectors is exhausted. A model expansion
rule (called a TRANTO statement) is composed of a
conditional expression, a state translation expression,
and a rate. A transition in a reliability model is thus
completely de�ned by its starting state (identi�ed by
the conditional expression), its ending state (de�ned
by the translation expression), and the rate at which
the transition occurs. Model growth is terminated by
checking the new state against the model termina-
tion rules (conditional expressions called DEATHIF
statements). Death states are not expanded. System
unreliability is calculated as the total probability of
entering a death state before the end of the mission
time.

The ASSIST language was extended to allow ref-
erence to two types of C functions termed conditional

functions and e�ect functions. A conditional func-
tion takes as input the state vector and returns a
value of TRUE or FALSE. Conditional functions are
used in DEATHIF statements and the conditional
part of TRANTO statements. An e�ect function is
used in place of the state translation expression of a
TRANTO statement.

Figures 5(a) and 5(b) show models of a simple
quad FTP in standard ASSIST (�g. 5(a)) and ex-
tended ASSIST (�g. 5(b)). In standard ASSIST,
the model begins with the declaration of two tran-
sition rate constants. This declaration is followed
by a SPACE statement that de�nes the state vector
as two four-element arrays (CH G and CH B). These
arrays are of type Boolean and indicate whether FTP
channels are GOOD (CH G) or BAD (CH B). In the

8

START statement, the state vector is initialized to
all channels being GOOD. The DEATHIF statement
supplies a majority vote termination condition. Fi-
nally, two TRANTO statements (IF : : : TRANTO : : :

BY : : : ;) supply model growth rules. The TRANTO
statements are embedded in a FOR loop to scan each
element of the state vector arrays.

CH_Fail_Rate = 1.0E-4;
FTP_Recovery = 3.0E4;
SPACE = (CH_G: array[1..4], CH_B: array[1..4]);
START = (4 of 1, 4 of 0);
DEATHIF CH_B[1]+CH_B[2]+CH_B[3]+CH_B[4] >=
 CH_G[1]+CH_G[2]+CH_G[3]+CH_G[4];
FOR i=1,4
 IF CH_G[i]=1 TRANTO
 CH_G[i]=0, CH_B[i]=1 BY CH_Fail_Rate;
 IF CH_B[i]=1 TRANTO
 CH_B[i]=0 BY FTP_Recovery;
ENDFOR;

(a) FTP model in standard ASSIST.

CH_Fail_Rate = 1.0E-4;
FTP_Recovery = 3.0E4;
SPACE = (FTP, CH: array[1..4]);
START = (5, 4 of 5);
DEATHIF ERRFTP();
FOR i=1,4
 IF GOOD(CH[i]) TRANTO
 CH_FailEff(i) BY CH_Fail_Rate;
 IF RECOVER(FTP) TRANTO
 FTP_RecEff() BY FTP_Recovery;
ENDFOR;

(b) FTP model in extended ASSIST.

Figure 5. Simple quad FTP models.

In the extended ASSIST model (�g. 5(b)), notice
the conditional function calls ERRFTP(), GOOD(),
and RECOVER() and e�ect function calls
CH FailE�() and FTP RecE�(). The model in �g-
ure 5(b) also re
ects a di�erent modelling strategy,
which is a natural result of the FMES process. Con-
sider the state vector. Two entities are modelled in
this system: actual physical components called chan-
nels (CH[i]) and a super component called FTP. The
FTP is a logical entity whose state is a collective
function of the channels' states. Also, these compo-
nents no longer have simple Boolean values but can
take on a range of values as follows:

GOOD = 1;

ACTIVE = 2;

IN USE = 4;

ERROR = 8;

RECOVERING = 16;

ELIMINATED = 32;

These values represent single bits in the state variable
and can be combined to de�ne a component's state.
Thus, a component can be GOOD (with state = 1)
or a component can be GOOD and IN USE (with
state = 5). The GOOD + IN USE value is used to
initialize the state variables in the START statement
in �gure 5(b). De�ning macros to operate on the
state variables is often helpful. The following macros
are used in the FMES code:

SetRecovery(v): Sets the RECOVERING bit.
SetFailError(v): Sets the ERROR bit and

clears the GOOD bit.

SetElim(v): Sets the ELIMINATED bit.
SetNotInUse(v): Clears the IN USE bit.
GoodInUse(v): Tests state variable for both

GOOD and IN USE bits.

ErrorInUse(v): Tests state variable for both
ERROR and IN USE bits.

A Simple FMES

Figures 5(a) and 5(b) are practically identical
with the exception that functions written in stan-
dard ASSIST have been replaced by function calls in
extended ASSIST. Conditional functions can take as
parameters one or more state variables. E�ect func-
tions can pass an integer argument for array index-
ing. The primary bene�t of using extended ASSIST
is that complex state transitions such as a network
repair can be coded in algorithmic form instead of the
exhaustive enumeration sometimes necessary with
standard ASSIST. A secondary bene�t is that the
resulting ASSIST model is less complicated and thus
more readable.

The ASSIST TRANTO statement contains three
expressions: a condition, a destination state transla-
tion, and a rate. The failure modes-e�ects simula-
tion describes the destination state translation as a
chain reaction among the components of the system
using the concepts of component modes and mode
e�ect messages developed in RMG. The FMES func-
tions are grouped into two categories: e�ect functions
(which are referenced in ASSIST TRANTO state
translation expressions) and dependency functions.
An e�ect function links the FMES with the ASSIST
model. The dependency functions propagate the ef-
fect throughout the system while making the appro-
priate state changes. Figure 6 shows the FMES for
the model of �gure 5(b).

9

According to the �rst TRANTO in �gure 5(b),
if a CH is GOOD, then it can fail with e�ect deter-
mined by CH FailE�(). The function CH FailE� �rst
modi�es the channel's state to FAIL + ERROR, then
it calls dependency function FTP Dependson CH().
(See �g. 6.) The FTP dependency function uses the
voter majority rule to determine the state of the FTP.
FTP should recover if any channel is producing er-
rors, and FTP is failed if the error-producing chan-
nels outnumber the good channels. Setting FTP to a
recovering state enables the second transition, in �g-
ure 5(b); this transition uses FTP RecE�() to obtain
the e�ect of the FTP recovery. In FTP RecE�(),
error-producing channels are set to not in use and
eliminated from the system.

CH_FailEff(my_id)
 int my_id;
 {
 SetFailError(CH[my_id]);
 FTP_DEPENDSON_CH();
 }
 FTP_DEPENDSON_CH()
 {
 int i,g,b;
 g=0; b=0;
 for (i=1; i<=4; i++)
 {
 if (GoodInuse(CH[i]) && !Error(CH[i])) {g++;}
 else if (ErrorInuse(CH[i])) {b++;}
 }

 FTP = GOOD||INUSE;
 if (b!=0) (SetRecover(FTP);}
 if (b>=g) || (g==0) {SetFailError(FTP);}
}
FTP_RecEff()
 {
 int i;
 for (i=1; i<=4; i++)
 if (ErrorInuse(CH[i]))
 {
 SetNotInuse(CH[i]);
 SetElim(CH[i]);
 }

 FTP_DEPENDSON_CH();
}

Figure 6. FMES C code for �gure 5(b).

Modelling With FMES

In the simple quad system, two types of transi-
tions are modelled: failure transitions and recovery
transitions. (However, others are possible.) Failure

transitions can occur at any time to any component.
The e�ect of the failure on the system state is deter-
mined by that component's fail e�ect function. Re-
covery transitions are most often enabled by a com-
ponent's fail e�ect function (although they can be
triggered by other e�ects). A recovery is brought
about by a super component. A super component
is a set of components that have been grouped to-
gether to increase reliability. The quad fault-tolerant
computer is an example of a super component.

Super components are responsible for redundancy
management. When a component fails, its fail e�ect
function sets the RECOVER mode descriptor of that
component's super component. A good example is
the quad redundant fault-tolerant computer. This
super component is called FTP and is composed of
four channels. When a channel fails, its fail e�ect
function sets the RECOVER
ag in FTP. The FTP
recovery e�ect functions are then called during the
calculation of the now enabled recovery transition.

Super components do not have failure transitions,
yet they are able to fail. Again, with the FTP as
an example, majority voting is used among its set
of channels to mask and detect errors. Whether
or not the FTP super component is operating
properly is a function of the state of the set of
CH's assigned to the FTP as calculated in function
FTP DEPENDSON CH(). A function sensing the
state of FTP is constructed and called as a death
condition. If the death condition is met, the FTP has
failed and thus the system (in this case) has failed.

A brief description of how the FMES is used in
ASSURE is as follows:

1. A set of mode descriptors and e�ect messages is
de�ned and a state vector constructed.

2. Fail e�ect and recovery e�ect functions are de-
�ned.

3. Condition functions for failure and recovery tran-
sitions are de�ned.

4. Death condition functions are de�ned.

5. The model is executed for each component as
follows:

a. IF FAIL CONDITION() TRANTO
FAIL EFFECT() BY RATE.

b. IF RECOVERY CONDITION() TRANTO
RECOVERY EFFECT() BY RATE.

c. Test for DEATH CONDITION() for each new
state.

d. Compute reliability as model is expanded,
pruning where possible.

6. Print results.

10

Example 3: Mesh Network

Figure 7 illustrates the system con�guration for
this mesh network example. Two network parti-
tions consisting of 7 nodes and 14 links interface
FTP with 4 quad redundant I/O groups. The mesh
network uses a regrow algorithm to repair failures.
The I/O devices connect to the network through
device interface units. This system contains over
80 components and 7 di�erent redundancy man-
agement groups or super components (FTP, NET1,
NET2, and four I/O devices). The computer, two
networks, and four I/O devices are recon�gurable
and controlled by the seven separate redundancy
management routines. The recovery of a simul-
taneous failure of a channel of the fault-tolerant
computer and a node of one of the networks re-
quires two separate operations. However, the re-
covery from a simultaneous link and node failure
on the same network can be accomplished in one
operation.

Component mode descriptors and mode
message. As previously mentioned, the FMES
is derived from the automated FMEA as used by
RMG; thus, a set of mode descriptors and mode
messages must be de�ned. Although di�erent mode

FTP channel
Network interface
Link
Node
Device interface
Device A

Device D
Device C
Device B

Figure 7. Example 3: Mesh network.

descriptors and messages can be de�ned for each component, it is best to seek, if possible, a set of common

descriptors and messages that can be used throughout the system. The system in �gure 7 is used as an example

because it is large and complex and the set of descriptors and messages needed to de�ne that system should

su�ce for most others.

Mode descriptors are implemented as bit values that have a meaning associated with their TRUE (set) and

FALSE (reset) values. In the following descriptions, the �rst value is associated with TRUE and the value in

parentheses is associated with FALSE.

GOOD (FAILED): Describes the component's physical state. If the component is GOOD, it

can FAIL at any time.

ACTIVE (PASSIVE): Describes the nature of failure. An ACTIVE failure is able to produce

erroneous behavior. A PASSIVE failure is analogous to failing safe.

ERROR (BENIGN): States that detectable errors are being produced.

IN USE (NOT IN USE): Used primarily for modelling spares. For example, a component (such as

a link) that is NOT IN USE might not a�ect the system with an active

failure. Super component recovery e�ect functions control the value of this

descriptor.

RECOVERING (NORMAL): Used with super components to enable recovery transitions.

ELIMINATED (MEMBER): Used in recovery e�ect functions to mark a component as having been

removed from the set of good components.

A component typically begins in a GOOD + IN USE state. A failure can cause it to transition to FAILED

+ IN USE + ERROR and can cause its super component to transition from GOOD + IN USE + NORMAL

to GOOD + IN USE + RECOVERING.

11

Mode messages have mutually exclusive values. Because the mode messages are not part of the state

variable, they can have similar names to convey similar meaning.

NOMINAL: Indicates that the sending component's current operation is within speci�cation.

FAIL: Indicates that the sending component has failed.

ERROR: Indicates detectable erroneous behavior.

NONE: Indicates passive failure.

NIU (Not In Use): Indicates that the sending component has been switched to standby (as a spare).

Fail e�ect functions. A fail e�ect function is named by attaching the term \ FailE�" to a component's

state variable name. For example, component CH has fail e�ect function CH FailE�. A fail e�ect function

has three stages. The �rst stage alters the component's mode, which can be, for example, from GOOD +

IN USE to FAILED + IN USE + ERROR. A second function can then be called to send the appropriate e�ect

messages to this component's neighbors. This function is named by attaching \ Dependents" to the component

name (e.g., in CH Dependents). Finally, a component calls zero, one, or more super component dependency

functions. The super component dependency functions can be contained in the \ Dependents" function, but

it is best to separate them because the super components are di�erent from normal components.

Dependency functions. A primary dependency function interprets a component's mode and sends a

message re
ecting the component's new state to those other components that are immediately a�ected. The

messages are sent through use of secondary dependency function calls of the form \X Dependson Y(X id, Y id,

Y message)," where Y is the local component. Thus, the function call X Dependson Y(X id, Y id, Y message)

is found in function Y Dependents.

For example, consider the NI which resides in a channel of the FTP (CH). As a result of executing a failure

transition for component CH[2], fail e�ect function CH FailE�(2) is called. This function then calls the primary

dependency function CH Dependents(2). Because two NI's reside in CH[2], two secondary dependency function

calls are made as follows:

NI Dependson CH(2,2,FAIL);

NI Dependson CH(3,2,FAIL);

The secondary dependency function alters the receiving component's state and then calls that component's

primary dependency function. The e�ect of the failure is thus propagated throughout the system.

A super component dependency function (e.g., FTP Dependson CH) di�ers substantially from a normal

component's dependency function. This di�erence occurs because a super component must have access to the

state of all components in its domain. For example, FTP Dependson CH must be able to read the state of each

of its channels to determine whether the voter function is error free. Also, in the case of the network, a single

failed node has the e�ect of taking the network o�-line until the network repairs. Thus, the super component

function NET Dependson NODE must be able to alter the state of all nodes and links in the network to set

them to NOT IN USE.

Recovery e�ect functions. A recovery e�ect function is named by attaching the term \ RecE�" to the

super component's name (e.g., FTP RecE�). A recovery e�ect function examines and alters, if necessary, the

state of each of the components in its domain. For example, after failing, a CH is in mode FAILED + IN USE

+ ERROR. The recovery function changes this to FAILED + NOT IN USE + ERROR + ELIMINATED;

the device is now no longer in use or part of the spare pool. The recovery function then calls the component's

primary dependency function to propagate the e�ect of the mode changes.

E�ect of CH[1] failure. The complete FMES for this system is not given here because of the amount of

detail. The following description explains what happens when CH[1] fails:

12

CH FAILEFF(): CH[1] set to FAILED + IN USE + ERROR status. CH Dependents() is

called to propagate state change. Super component FTP Dependson CH()

is called.

CH Dependents(): NI Dependson CH() is called with FAIL message.

FTP Dependson CH(): Voter status checked. FTP set to RECOVERING because of error on

CH(1).

NI Dependson CH(): NI[1] set to FAILED + IN USE + ERROR status (e�ect of FAIL message

from CH). NET1 Dependson NI() is called with ERROR message.

NET1 Dependson NI(): NI[1] is controller (IN USE) and sends ERROR, so NET1 sets

RECOVERING. NET1 also sets all children (NODES and LINKS) to

GOOD + NOT IN USE. NODE Dependents() and LINK Dependents()

functions are called with NOT IN USE message. (LINK Dependents are

not traced from this point.)

NODE Dependents(): For each NODE, message from parent NET is interrogated and corre-

sponding e�ect message is sent to the node's attached DIU (if one exists).

In this case, four nodes send a NOT IN USE message to their DIU's.

DIU Dependson NODE(): In response to the NODE message, the DIU sets its mode to NOT IN USE.

Device component function, DEVn Dependson DIU(), is called with

NOT IN USE message.

DEVn Dependson DIU(): In response to the NOT IN USE message sent from the DIU, the I/O

device sets its mode to NOT IN USE also. Because the I/O devices are

quad redundant, super component DEVICE Dependson DEVn() is called.

DEVICE Dependson DEVn(): Voter status checked. DEVICE is not set to RECOVER because device

error is not present (being NOT IN USE is not an error condition).

Upon return to ASSIST, the following state exists:

CH[1] is set to ERROR. NI[1] is set to ERROR.

FTP is set to RECOVERING. NET1 is set to
RECOVERING.

All NODES, LINKS, DIU's, and DEVICES on
NET1 are set to NOT IN USE.

A component such as the DEVn can be both
GOOD and NOT IN USE and still fail to a state of
FAILED, ERROR, and NOT IN USE. If this fail-
ure occurs upon restoration of the network when
the DEVn status is changed from NOT IN USE
to IN USE, then the super component function
DEVICE Dependson DEVn detects the error and
sets a recovery for the DEVICE.

Results. Because the FMES is an extension of
ASSIST, results are only available for serial ASSURE
and parallel ASSURE. When run on a SUN 3/150
processor, serial ASSURE took 6.2 hours and pro-
duced over 27 million transitions. If states are not
aggregated, then the number of transitions is equiv-
alent to the number of states. Many of the states are

equivalent, and direct comparison with other tools
that would aggregate these states is di�cult. How-
ever, that this system of dynamically recon�guring
mesh networks was analyzed in reasonable time on an
ordinary computer is an accomplishment that has not
been achieved before. Parallel ASSURE (again using
a 32-node hypercube) solved this model in a scant
1.3 minutes. It is expected that large fault-tolerant
systems, typical of those found in today's avionic ar-
chitectures, can now be analyzed using FMES and
Parallel ASSURE.

Concluding Remarks

The reliability model generator (RMG) and
ASSURE are prototype programs that have been
developed to test advanced concepts for the reli-
ability analysis of future fault-tolerant
ight con-
trol systems. Results of tests using RMG indicate
that the automated failure modes-e�ects analysis
(FMEA) algorithm embedded in RMG successfully
generated an accurate reliability model from a graph-
ical block diagram of the system. A drawback of
this technique may be that the model size is almost

13

three times larger for the automatically generated
graphical model.

Combining the processes of the ASSIST and
SURE programs, the ASSURE program eliminates
the need to produce and maintain the complete
model state space in memory. Solving a model
with over 40 000 states and 1 000 000 transitions, the
ASSURE program execution was 10 times faster than
ASSIST/SURE and used 100 times less memory. An-
other feature of ASSURE is that its solution tech-
nique can be parallelized and thus can be executed
on parallel computers such as the hypercube. When
this same model was run on a 32-node hypercube, an-
other hundredfold increase in performance over serial
ASSURE was obtained.

To better model complex redundancy manage-
ment processes, the ASSIST language syntax was ex-
tended in ASSURE to allow function calls to C lan-
guage procedures. Drawing on the automated FMEA
approach pioneered with RMG, a modelling tech-
nique called failure modes-e�ects simulation was used
to model a large system consisting of one quad fault-
tolerant computer, two mesh networks, and several
quad redundant input/output devices. The system
contained over 80 components and 7 redundancy
management groups overall. This system produced
over 27 million transitions and took 6.5 hours to
complete using the serial version of ASSURE. The
parallel version was completed in 1.3 minutes.

These results indicate that the techniques are
available to represent and solve large, complex re-
liability models of integrated and distributed
ight
control systems.

NASA Langley Research Center
Hampton, VA 23681-0001

July 23, 1992

References

1. Cohen, G. C.; Lee, C. W.; Strickland, M. J.; and
Torkelson, T. C.: Final Report: Design of an Integrated

Airframe/Propulsion Control System Architecture. NASA

CR-182007, 1990.

2. Bavuso, Salvatore J.; Dugan, Joanne Bechta; Trivedi,
Kishor; Rothmann, Beth; and Boyd, Mark: Applications

of the Hybrid Automated Reliability Predictor. NASA

TP-2760, 1987.

3. White, Allan L.: Upper and Lower Bounds for Semi-

Markov Reliability Models of Recon�gurable Systems.

NASA CR-172340, 1984.

4. Butler, Ricky W.; and White, Allan L.: SURE Reliability

Analysis|Program and Mathematics. NASA TP-2764,
1988.

5. Butler, Ricky W.: An Abstract Language for Specify-

ing Markov Reliability Models. IEEE Trans. Reliab.,

vol. R-35, no. 5, Dec. 1986, pp. 595{601.

6. Johnson, Sally C.: ASSIST User's Manual. NASA
TM-87735, 1986.

7. Cohen, G. C.; and McCann, C. M.: Reliability Model

Generator Speci�cation. NASA CR-182005, 1990.

8. McCann, Catherine M.; and Palumbo, Daniel L.: Re-

liability Model Generator for Fault-Tolerant Systems.
AIAA-88-4435, Sept. 1988.

9. Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak,
Kenneth R.; Rosch, Gene; Alger, Linda S.; and Schor,

Andrei L.: Advanced Information Processing System
(AIPS)-Based Fault Tolerant Avionics Architecture for

Launch Vehicles. Proceedings IEEE/AIAA/NASA 9th

Digital Avionics Systems Conference, IEEE Catalog
No. 90CH2929-8, Inst. of Electrical and Electronics En-

gineers, Inc., 1990, pp. 125{132.

10. Palumbo, Daniel L.: Three Approaches to Reliabil-

ity Analysis. Proceedings of the IEEE 1989 National

Aerospace and Electronics Conference|NAECON 1989,

Volume 1, IEEE Catalog No. 89CH2759-9, Inst. of Elec-

trical and Electronics Engineers, Inc., 1989, pp. 308{315.

14

